Ensemble-based Chemical Data Assimilation I: General Approach
نویسندگان
چکیده
Data assimilation is the process of integrating observational data and model predictions to obtain an optimal representation of the state of the atmosphere. As more chemical observations in the troposphere are becoming available, chemical data assimilation is expected to play an essential role in air quality forecasting, similar to the role it has in numerical weather prediction. Considerable progress has been made recently in the development of variational tools for chemical data assimilation. In this paper we assess the performance of the ensemble Kalman filter (EnKF) and compare it with a state of the art 4D-Var approach. We analyze different aspects that affect the assimilation process, and investigate several ways to avoid filter divergence. Results with a real model and real observations show that EnKF is a promising approach for chemical data assimilation. The results also point to several issues on which further research is necessary.
منابع مشابه
Ensemble-based Chemical Data Assimilation II: Covariance Localization
Data assimilation is the process of integrating observational data and model predictions to obtain an optimal representation of the state of the atmosphere. As more chemical observations in the troposphere are becoming available, chemical data assimilation is expected to play an essential role in air quality forecasting, similar to the role it has in numerical weather prediction. Considerable p...
متن کاملDistance Dependent Localization Approach in Oil Reservoir History Matching: A Comparative Study
To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...
متن کاملEnhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)
The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...
متن کاملEnsemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models*
The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems (DDDAS) that efficiently integrate the observational data and the models. Data assimilation, the dynamic incorporation of additional data into an executing application, is an essential DDDAS concept with wide applicability. In this paper we discuss practical aspects o...
متن کاملEnsemble-based Data Assimilation: a Review
The literature on ensemble-based data assimilation techniques has been growing rapidly in past decade. These techniques are being explored as possible alternatives to current operational analysis techniques. Ensemble-based assimilation techniques are typically comprised of an ensemble of parallel data assimilation and forecast cycles. The background-error covariances used in the data assimilati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007